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proposed. The proposed algorithm is characterized by a multi-stage modular design. It combines various processes such 
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diffusion. The obtained results through applying the National Institute of Technology randomness tests clearly show 

that the algorithm is capable of producing high quality cryptographically secure pseudo-random numbers. 
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I. INTRODUCTION 

Symmetric key encryption algorithms are major 

components in the security of the digital world. Many 

symmetric algorithms exist nowadays and many more 

emerge every day. However, only algorithms that prove to 

be the most secure find their way to real world 

applications. 

A symmetric key encryption algorithm – as the name 

implies – uses the same key for both encryption and 

decryption of a specific piece of data [1]. The choice of 

the symmetric key is a very important factor to the 

strength of the encryption process. Choosing a weak key – 

which is a key that is too easy to guess – is a major 

encryption related security hazard. This problem is the 

result of the human inability to remember long and 

unrelated sequences of symbols. Therefore, humans tend 

to choose passwords that relate to aspects of their lives, 

such as birthdays, phone numbers, and names of loved 

ones. 

The only guaranteed way of breaking an encryption is 

through trying all possible combinations of the symbol set 

from which the password is composed. This approach is 

known as the brute-force approach [1]. However, although 

this approach is guaranteed, it is still a very time 

consuming process making it infeasible in most situations. 

Moreover, when the password is composed of symbols 

relating to aspects of its owner’s life, the search space is 

greatly reduced, and the brute-force approach can be 

refined to try a limited number of combinations assuming 

that an attacker has enough information about the victim. 

Such personal information is gathered through what is 

known as Social Engineering [2]. 

Computers on the other hand, do not suffer from the 

same difficulty in remembering long sequences of 

unrelated symbols. For that reason, when the encrypting 

party is a computer program, generated keys can be either 

truly random or pseudo-random. Truly random numbers 

(RNs) or keys are unpredictable and can be generated by  

 

 

measuring random physical or natural phenomena such as 

radioactive decay, atmospheric noise, amplified noise 

generated by a resistor or a semi-conductor diode, fed to a 

comparator or Schmitt trigger and then the output is 

sampled to get a series of bits which are statistically 

independent or random, and then feeding that seed data to 

a computer program which generates a random value [3]. 

Pseudo-random numbers (PRNs) or keys can also be 

generated by feeding a seed value to a computer program, 

however, the seed is obtained from a source that has a 

limited number of seed values, and thus the key exhibits 

characteristics that are very similar to those of random 

keys, yet the key is not truly random [4]. 

Pseudo-random number generators (PRNGs) are 

usually preferred to true random number generators due to 

their speed of operation and for the reproducibility of their 

numbers from an initial value [5]. However, many PRNGs 

fail to produce bit sequences that exhibit random 

characteristics, which can lead to undesirable 

consequences. In order to approve a PRNG as a means for 

producing pseudo-random bit sequences, bit sequence 

randomness testing can be applied. A very popular set of 

pseudo-randomness tests was presented by the National 

Institute of Standards and Technology (NIST) [6]. These 

tests statistically examine a bit sequence for randomness 

characteristics and provide a judgment of whether the bit 

sequence is random or not. NIST also presented a number 

of recommendations for PRN generation using 

deterministic random bit generators [7]. 

After the brief definitions in Section 1, previous work is 

summarized in Section 2. Section 3 defines some selected 

NIST randomness tests which were used to validate the 

generated pseudo-random bit sequences. The methodology 

of the proposed pseudo-random number generation 

algorithm is considered in Section 4. Then section 5 lists 

and discusses the experimentation and results, and finally 

Section 6 concludes the work.  
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II. LITERATURE REVIEW 

A huge amount of work has been published on the 

generation of RNs and PRNs as integers, integer sequence, 

Gaussian, set of decimal fractions, integers that fit normal 

distribution or numbers in the 0 and 1 range with 

configurable decimal places. In the following a brief but 

chronologically arranged work on RNGs is listed.   

A decimal procedure for generating RNs designed for 

decimal machines such the UNIVAC was proposed by 

Moshman [8]. It followed a suggestion of Von Neumann 

where an n digit number is squared and the middle n digits 

of the resultant number are used as a random number. That 

number is in turn squared and the process is repeated as 

many times as desirable.  

A 48 bit PRNG was presented by Kuehn [9]. It 

demonstrated its adequacy for use in Monte Carlo 

calculations. Pike and Hill [10, 11] suggested a 

multiplicative congruential method for pseudo-random 

generation. Brent [12] presented a Gaussian PRNG for the 

FORTRAN language. The presented algorithm generates 

numbers which are independent and normally distributed 

on [0, 1).  

Impagliazzo and Levin [13] and Hastad [14] suggested 

using one-way functions for pseudo-random number 

generation. Deng et al. [15] suggested a number of 

methods for enhancing the yield of pseudo-random 

number generators, thus producing sequences which are 

asymptotically independent and uniformly distributed.  

Bellare et al. [16] presented the concept of distributed 

pseudo-random number generators. Matsumoto and 

Nishimura [17] presented an algorithm which they named 

the Mersenne Twister (MT). The proposed algorithm had a 

longer period and larger k-distributions when compared to 

existing pseudo-random number generators at the time. 

Ren [18] presented a PRNG that is capable of generating 

sequences of long period, large complexity, balanced 

statistics, and low cross-correlation from the addition of 

m-sequences with pairwise-prime linear spans (AMPLS).  

Xuelong et al. [19] proposed the use of one-dimensional 

extended non-uniform cellular automata to generate 

pseudo-random bit sequences. The cellular automata rules 

were generated using a genetic algorithm.  

Petit et al. [20] proposed a design for pseudo-random 

number generation based on the block cipher design. The 

proposed design showed very good resistance against side-

channel attack strategies.  

Using of graphics hardware for generating PRNs was 

proposed by Langdon [21]. He presented a high speed 

pseudo-random number generator for the NVidia Cuda 

parallel architecture using C++ as the implementation 

language.  

PRNGs based on chaotic iterations were also suggested 

by Bahi et al. [22-24], for watermarking applications. 

They proposed chaotic dynamical systems which appear to 

be good candidates to achieving a mix of secure and fast 

PRNGs in order to benefit from their respective qualities. 

Mitra and Kundu [25] proposed a cost effective design 

methodology for pseudo-random generation using cellular 

automata and they presented an Equal Length Cellular 
 

Automata based PRNG. 

Heike et al. [26] suggested the generation of PRNs by 

applying iteration to a one-way function, based on an 

initial value and a random key to generate part of the PRN 

that is used as a key in the next iteration step of the one-

way function.  

Elsherbeny et al. [27] proposed a new Deterministic 

Chaotic System that implements an Iteration Function 

System (IFS) for generating a PRN. In this system and at a 

certain initial value, the iterated function generates chaotic 

random numbers. 

Splittable pseudo-random number generators (PRNGs) 

were very useful for structuring purely functional 

programs that deal with randomness, because they allow 

different parts of the program to independently generate 

random values, thus avoiding random seed threading 

through the whole program. Claessen and Palka [28] 

proposed a Splittable PRNG using a cryptographic hash 

function. In this scheme, the authors showed that the 

currently known and used splittable PRNGs are either not 

efficient enough, have inherent flaws, or lack formal 

arguments about their randomness. They provided proofs 

of randomness guarantee under some cryptographic 

assumptions. 

This paper suggests a PRNG which encompasses a 

multi-stage algorithm that implements bitwise 

manipulation. It is designed to achieve adequate bit string 

confusion and diffusion by combining various processes 

such as bit swapping, modular operations and secret 

splitting techniques. Experimental results show that the 

presented PRNG is cryptographically secure through the 

application of the NIST randomness tests. 

III. RANDOMNESS TESTS 

PRNGs are either secure but slow, or fast but insecure 

[29]. In addition, they are either not efficient enough, have 

inherent flaws, or lack formal arguments for their 

randomness. Claessen and Palka [28] provided proofs in 

order to show strong guarantees of randomness under 

assumptions commonly made in cryptography. Also, NIST 

[6] published a set of statistical tests; six of them will be 

used for validation purposes here. These tests are the 

Frequency (Monobit) test, Frequency within a Block test, 

the Runs test, the Longest-Run-of-Ones in a Block test, the 

Binary Matrix Rank test, and the Discrete Fourier 

Transform (or Spectral) test.  The most important value to 

calculate in these tests is the P-value, which is to be 

compared with a significant probability level α. For 

cryptographic applications, α is found to have a value of 

about 0.01. α is defined as the probability that a 

randomness test of the generated number indicates that it 

is not random when it is really random. Moreover, the P-

value is the probability that a perfect random number 

generator would have produced a bit sequence less random 

than the sequence that was tested. The testing criteria 

applied is if P-value >= α, then the sequence appears to be 

random but if P-value < α, then the sequence appears to be 

non-random. A short summary of the selected randomness 

tests is given below. 
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A. Frequency (Monobit) Test  

It tests the proportion of 0’s and 1’s for the entire sequence 

in order to determine whether they are approximately the 

same as would be expected for a truly random sequence. 

Given a number  = b1, b2…, bn, then the observed value 

Sobs is calculated and used determine the P-value as 

defined by eq 1. 
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Where Sn is the sum of all string bits after converting each 

0 to -1, and erfc is the complementary error function. 

B. Frequency Test within a Block  

This test determines if the frequency of 1’s in an M-bit 

blocks is approximately M/2, as expected under an 

assumption of randomness. The P-value is calculated by 

eq 2. 

 2/)(,2/ 2 obsNigamcvalueP   . . . (2) 

Where igamc is the incomplete gamma function, N is the 

number of M-bit blocks to be tested, and χ
2
(obs) is the chi 

function of the observed proportion of 1’s within a given 

M-bit block. 

C. The Runs Test  

It tests the total number of uninterrupted sequence of 

identical bits; i.e. it indicates the speed of 1’s and 0’s 

whether it is too fast or too slow. The P-value is calculated 

by eq 3. 
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Where Vn(obs) is the total number of run across n and π is 

the pre-test proportion in the input sequence. 

D. Longest-Run-of-Ones in a Block Test 

It tests the longest run of 1’s within M-bit blocks, and its 

consistency with that expected in a random sequence. The 

P-value is calculated by eq 4. 
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Where χ
2
(obs) is a matching measure between observed 

longest run length within M-bit blocks with the expected 

longest length within M-bit blocks, i.e. it gives how well 

the observed number of ranks of various orders match the 

expected number of ranks under an assumption of 

randomness. 

E. Matrix Rank  

This test checks for linear dependence among fixed 

length substrings of the original sequence. The P-value is 

calculated by eq 5. 

                    . . .  (5) 

 

Where χ
2
(obs) is a measure of how well the observed 

number of ranks of various orders match the expected 

number of ranks under an assumption of randomness. 

F. Discrete Fourier Transform (or Spectral) Test 

It tests the peak heights in the Discrete Fourier 

Transform of the sequence in order to detect periodic 

features in the sequence that indicate a deviation from the 

assumption of randomness. The intention is to detect 

whether the number of peaks exceeding the 95 % 

threshold is significantly different from 5 %. The P-value 

is calculated by eq 6 

.                      
   

  
  . . . (6) 

Where d is the normalized difference between the 

observed and the expected number of frequency 

components that are beyond the 95 % threshold. 

IV. THE PROPOSED PRNG METHODOLOGY 

The PRNG algorithm proposed in this paper starts with 

an agreed upon seed that could be s used as a key for a 

cryptographic system. This seed is randomly selected and 

may consist of any combination of letters (lower or upper 

case) and numbers. The seed components are replaced by 

their ASCII code binary representation as they enter to the 

PRNG. This algorithm can generate PRN of any length; 

however, for the purpose of assuring randomness by NIST 

[6] standard tests, the selected seed shall be of length 

n*128 bits where n is an integer value larger than 1. 

Shannon’s principle of diffusion and confusion [30] 

was achieved in the algorithm design through conducting 

three successive stages covering bit manipulation such as 

bit swapping and modular operations, logical operations, 

and finally a secret splitting technique as detailed below. 

A. Stage 1:  

This stage achieves bits string confusion by initially 

swapping the bits of the original seed and then applying 

modular operations. It consists of the following 4 steps as 

illustrated in fig 1. 

 

Fig 1. Work flow for stage 1. 

Step 1: On receiving the seed in binary form, bit string 

confusion is achieved by interchanging or swapping 

adjacent bits.  Therefore if the seed bits string is 

―b1b2b3b4…bn‖, then the resulting bit string by eq. 7. 

 

"..." 4321 nbbbbbB 
     .  .  .  .  (7) 

Step 2: The resulting number B, is split into blocks of 

32 bits length each, eq. 8. 

 

",...,," 3,21 kBBBBB 
, where k = n/32  .  .  .  (8)  
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Step 3: The far most blocks (B1& Bk) are treated two 

modular operations.  This step performs modular 

multiplication, resulting into blocks C1, and then the next 

far most blocks (B2& Bk-1), are multiplied resulting into 

blocks C2 and so on, giving the results by eq 9. 

 
322mod)( jii BBC 

+1  .  .  .  .  (9) 

 

Where i = 1, 2, 3, …, k/2 and j = k, k-1, k-2, …, (k/2) +1 

 

Step 4: Similarly as in step 3, the same blocks are 

treated by performing modular addition instead of modular 

multiplication and the results are given by eq. 10. 

    
322mod)( jij BBC 

  .  .  .  .  (10) 

 

The resulting bit string of this stage will be as in eq 11.

  

",...,," 3,21 kCCCCC 
  .  .  .  .  (11) 

B. Stage 2: 

The obtained bit string C of the previous stage is used 

as input to the next stage. Bitwise XOR operations are 

performed on its components successively as illustrated in 

fig 2. Each bit is XORed with that next to it from left to 

right, while the least significant bit is finally XORed with 

the most significant bit. The resulting bit string is given by 

eq. 12. 

",...,," 3,21 nDDDDD 
 .   .   .  .    (12) 

Where, 1 iii CCD
, for i = 1 to n-1 and

1CCD nn 
 . 

 

 

Fig 2. Work flow for stage 2. 

C. Stage 3: 

In order to introduce more control on the generated 

PRN, some information must be agreed upon by the users 

in advance. This would enable the users to generate their 

own random numbers to be used for cryptographic 

systems. The adopted structure of this agreed upon 

information in the proposed algorithm consists of a 

predefined procedure to group the obtained bit string D of 

stage 2 into blocks of specific length (8 bits here), regroup 

theses blocks according to a specified different secret 

splitting weight for each segment, manipulate with these 

segments as shown in the following steps.  

Step1: split D into k segments of certain length, and 

each segment is considered to be one cell. Therefore, the 

number of cells k = n / segment bits (k = n / 8 here). 

Step 2: Convert each segment into bytes and place that 

segment in the cell. 

Step 3: Use the agreed upon splitting weights or 

percentages, such as r1 = 25%, r2 = 35%, and r3 = 45%. It 

must be noted that any number of weights can be used.  

Step 4:  These cells are decomposed through a 

successive segmentation process based on the given 

splitting weights multiplied by the remaining number of 

cells in each run, which is achieved by taking the integer 

part only of the result and then use it as the number of 

cells in each new segment. This step is demonstrated as 

follows: 

 R1 = └  k * r1%  ┘,  

 R2 = └  (k – R1) * r2 % ┘,  

 R3 = └  (k – (R1+R2)) * r3 % ┘,   

 R4 = └  (k – (R1+R2+R3)) * r1 % ┘ ,  

And so on until all k cells are considered. 

Step 5: Each new segment is then XORed with its 

corresponding weight.  

Step 6: Convert the output of step 5 back to binary 

number.  

At the end of this step, the system generates the first set 

of pseudo-random numbers.  

Step 7: In order to generate the next set of random 

numbers, the obtained PRN of step 6 is fed as input to 

stage 1, then all the steps of stages 1, 2, and 3 are repeated. 

V. EXPERIMENTATION AND RESULTS 

A software was written in C# language, implementing 

the NIST tests utilised for the experiments conducted on 

the proposed PRNG algorithm. The software is designed 

to accept a seed of any number of characters and generate 

as many random numbers as practically required. The used 

seeds in these experiments are varying length binary 

sequences obtained from the binary expansion of e 

(exponent). This choice of seed was made in order to make 

the experiments easily repeatable.  Experiments were 

carried out for the generation and testing of random keys 

of 128, 512, 1024, and 2048 bit lengths. However, these 

tests can be carried out practically for any key length. All 

the generated numbers were tested for randomness through 

the six elaborate tests outlined in section 3, namely 

frequency test, frequency block test, runs test, longest run 

test, binary matrix test and discrete Fourier transform 

(spectral) test. 

The potential problems with PRNGs are their failure in 

statistical pattern-detection tests.  The causes of failures 

are usually attributed to many reasons such as lack of 

distribution uniformity; correlation of successive values, 

and the output sequence has poor dimensional distribution 

and a shorter seed state.  

In order to see the progress of randomness generation 

throughout the three stages of the algorithm, the PRNG 

algorithm is run using the secret splitting weights r1=20%, 

r2=30%, and r3=50%. The obtained success rates for 

random sequence generation for key lengths 128, 256, 

512, 1024, and 2048 bits is listed in tables I - III. 
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 TABLE I. FREQUENCY TEST AND FREQUENCY BLOCK TEST 

RESULTS FOR THE THREE STAGES. 

 

TABLE II. RUNS TEST AND LONGEST RUN TEST RESULTS FOR 

THE THREE STAGES 

 Key 

length  

Runs test Longest Run test 

Stage1 Stage2 Stage3 Stage1 Stage2 Stage3 

128 

bit 98.5% 99.2% 99.7% 99.0% 98.2% 99.1% 

256 
bit 98.4% 99.3% 99.2% 99.0% 99.0% 99.1% 

512 

bit 98.9% 99.1% 98.9% 98.9% 98.3% 99.1% 

1024 
bit 99.1% 98.9% 98.9% 98.8% 99.4% 99.3% 

2048 

bit 98.4% 98.9% 99.1% 98.5% 98.8% 98.5% 

 

TABLE III. BINARY MATRIX TEST AND DISCRETE SPECTRAL 

TEST RESULTS FOR THE THREE STAGES. 

Key 

length 

Binary Matrix Discrete Spectral test 

Stage1 Stage2 Stage3 Stage1 Stage2 Stage3 

128 

bit 99.0% 99.0% 98.9% 98.1% 98.2% 98.4% 

256 
bit 98.5% 98.6% 99.1% 98.8% 98.5% 98.7% 

512 

bit 99.1% 99.2% 98.8% 98.8% 98.9% 98.9% 

1024 
bit 99.0% 98.6% 99.1% 98.7% 98.3% 99.1% 

2048 

bit 98.4% 98.1% 98.7% 98.4% 98.8% 99.0% 

 

The results of the six tests for the three stages show the 

improvement in randomness along the stages which 

justifies the use of more than one stage in the proposed 

algorithm.  

 

The tests for the generated pseudo-random sequences by 

the algorithm using all the six tests are listed in table IV. 

This table lists the rate of success for key lengths of 128, 

256, 512, 1024, and 2048 bits. The calculated rates of 

success of the generated PRNs varies between 98.4% and 

99.1% for the tests used, therefore, the proposed algorithm 

is producing satisfactory randomness. This randomness is 

confirmed by fig 3, which shows the algorithm rate of 

failure as a function of the number of iterations. All the six 

tests involved manifested convergence in the rate of 

failure to a very small value around 1% as the number of 

iterations increase beyond 2000 epoch. 

TABLE IV. PERCENTAGES OF BIT SEQUENCES PASSING 

THE NIST TESTS FOR THE PROPOSED PRNG ALGORITHM 

 (FOR SECRET SPLITTING PERCENTAGES; R1=20%, 

R2=30%, AND R3=50%) 

 

 

Fig 3. The rate of failure for different tests along the 

number of iterations. 

An investigation is also conducted seeking the best 

combination of secret splitting percentages that produce 

better pseudo-random number generation. However, no 

significant differences were noticed in the calculated 

success rates for various secret splitting percentages in the 

case of all the key sequence lengths involved, i.e. 128, 

256, 512, 1024, and 2048 bits.    

 

However, it was noticed that the 1024 bits key sequence 

length has given slightly better randomness success rate 

than others considered. The results of running the PRNG 

algorithm for this case are listed in table V, and illustrated 

in fig 4. 

 

 

 

 

 

 

 

 

 Key 

lengt

h 

Frequency Frequency Block 

Stage

1 

Stage

2 

Stage

3 

Stage

1 

Stage

2 

Stage

3 

128 

bit 99.1% 98.9% 98.3% 99.4% 99.4% 99.2% 

256 

bit 98.8% 98.5% 99.3% 99.1% 98.8% 98.7% 

512 

bit 99.2% 98.9% 99.3% 98.9% 98.5% 98.6% 

1024 

bit 99.2% 98.8% 99.1% 99.4% 99.2% 99.8% 

2048 

bit 98.3% 98.5% 99.1% 99.3% 98.7% 99.3% 

Key 

Lengt

h 

(bits) 

Frequ

ency 

Frequency   
Block 

Runs Longes

t Run 

Binary 

Matrix 

DST 

128 98.3% 99.2% 99.7% 99.1% 98.9% 98.4% 

256 99.3% 98.7% 99.2% 99.1% 99.1% 98.7% 

512 99.3% 98.6% 98.9% 99.1% 98.8% 98.9% 

1024 99.1% 99.8% 98.9% 99.3% 99.1% 99.1% 

2048 99.1% 99.3% 99.1% 98.5% 98.7% 99.0% 
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TABLE V: THE AVERAGE RATE OF SUCCESS FOR DIFFERENT TESTS ON SEQUENCES USING DIFFERENT PERCENTAGE VALUES 

OVER 10000 ITERATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4. The average rate of success for different tests on 

sequences using different percentage values over 10000 

iterations. 

VI. SECURITY ISSUES 

Mixing of bitwise manipulation or swapping, 

performing modular operations (multiplication and 

addition), implementing Boolean operations (XOR), and 

secret splitting processes according to predefined weights 

serves to avoid purely algebraic attacks and the purely bit 

oriented attacks. They also prevent the mathematical 

behaviour of the scheme from being shaped easily. They 

both contribute to a great increase in mathematical 

complexity together with high computational efficiency.  

Moreover, all the adopted operations can be easily and 

efficiently implemented whether by hardware or by 

software. 

VII. CONCLUSION 

An algorithm for computationally fast, cryptographically 

secure pseudo-random key generation has been proposed 

and described in this paper. It is a multi-stage algorithm 

based on mixing bitwise Boolean operations, integer 

modular operations, along with bit manipulations and 

displacements for secret splitting. The experimental part of 

the paper demonstrated that an average of 98.9% the 

generated sequences were unpredictable and passed 

successfully six tests proposed by the NIST. 
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