
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4503 12

A Cryptographically Secure Multi-stage

Pseudo-random Number Generator

Adi A. Maaita
1
, Hamza A. A. Al_Sewadi

 2
, Abdulameer K. Husain

3
, Osama Al-Haj Hassan

4

Department of Software Engineering, Faculty of IT, Isra University, Amman, Jordan
 1,2

Department of Computer Science, Faculty of IT, Jarash University, Amman, Jordan
 3

Department of Computer Science, Faculty of IT, Isra University Amman, Jordan
 4

Abstract: Random and Pseudo-random number generators are of great interest and are still sought for the benefit of

stronger keys for cryptosystems. A new cryptographically secure algorithm for pseudo-random number generation is

proposed. The proposed algorithm is characterized by a multi-stage modular design. It combines various processes such

as bit swapping, modular operations and secret splitting techniques in order to achieve adequate confusion and

diffusion. The obtained results through applying the National Institute of Technology randomness tests clearly show

that the algorithm is capable of producing high quality cryptographically secure pseudo-random numbers.

Keywords: Computer security, Cryptosystems, Key distribution, Modular design, Pseudo-random numbers generators,

Security agreement.

I. INTRODUCTION

Symmetric key encryption algorithms are major

components in the security of the digital world. Many

symmetric algorithms exist nowadays and many more

emerge every day. However, only algorithms that prove to

be the most secure find their way to real world

applications.

A symmetric key encryption algorithm – as the name

implies – uses the same key for both encryption and

decryption of a specific piece of data [1]. The choice of

the symmetric key is a very important factor to the

strength of the encryption process. Choosing a weak key –

which is a key that is too easy to guess – is a major

encryption related security hazard. This problem is the

result of the human inability to remember long and

unrelated sequences of symbols. Therefore, humans tend

to choose passwords that relate to aspects of their lives,

such as birthdays, phone numbers, and names of loved

ones.

The only guaranteed way of breaking an encryption is

through trying all possible combinations of the symbol set

from which the password is composed. This approach is

known as the brute-force approach [1]. However, although

this approach is guaranteed, it is still a very time

consuming process making it infeasible in most situations.

Moreover, when the password is composed of symbols

relating to aspects of its owner’s life, the search space is

greatly reduced, and the brute-force approach can be

refined to try a limited number of combinations assuming

that an attacker has enough information about the victim.

Such personal information is gathered through what is

known as Social Engineering [2].

Computers on the other hand, do not suffer from the

same difficulty in remembering long sequences of

unrelated symbols. For that reason, when the encrypting

party is a computer program, generated keys can be either

truly random or pseudo-random. Truly random numbers

(RNs) or keys are unpredictable and can be generated by

measuring random physical or natural phenomena such as

radioactive decay, atmospheric noise, amplified noise

generated by a resistor or a semi-conductor diode, fed to a

comparator or Schmitt trigger and then the output is

sampled to get a series of bits which are statistically

independent or random, and then feeding that seed data to

a computer program which generates a random value [3].

Pseudo-random numbers (PRNs) or keys can also be

generated by feeding a seed value to a computer program,

however, the seed is obtained from a source that has a

limited number of seed values, and thus the key exhibits

characteristics that are very similar to those of random

keys, yet the key is not truly random [4].

Pseudo-random number generators (PRNGs) are

usually preferred to true random number generators due to

their speed of operation and for the reproducibility of their

numbers from an initial value [5]. However, many PRNGs

fail to produce bit sequences that exhibit random

characteristics, which can lead to undesirable

consequences. In order to approve a PRNG as a means for

producing pseudo-random bit sequences, bit sequence

randomness testing can be applied. A very popular set of

pseudo-randomness tests was presented by the National

Institute of Standards and Technology (NIST) [6]. These

tests statistically examine a bit sequence for randomness

characteristics and provide a judgment of whether the bit

sequence is random or not. NIST also presented a number

of recommendations for PRN generation using

deterministic random bit generators [7].

After the brief definitions in Section 1, previous work is

summarized in Section 2. Section 3 defines some selected

NIST randomness tests which were used to validate the

generated pseudo-random bit sequences. The methodology

of the proposed pseudo-random number generation

algorithm is considered in Section 4. Then section 5 lists

and discusses the experimentation and results, and finally

Section 6 concludes the work.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4503 13

II. LITERATURE REVIEW

A huge amount of work has been published on the

generation of RNs and PRNs as integers, integer sequence,

Gaussian, set of decimal fractions, integers that fit normal

distribution or numbers in the 0 and 1 range with

configurable decimal places. In the following a brief but

chronologically arranged work on RNGs is listed.

A decimal procedure for generating RNs designed for

decimal machines such the UNIVAC was proposed by

Moshman [8]. It followed a suggestion of Von Neumann

where an n digit number is squared and the middle n digits

of the resultant number are used as a random number. That

number is in turn squared and the process is repeated as

many times as desirable.

A 48 bit PRNG was presented by Kuehn [9]. It

demonstrated its adequacy for use in Monte Carlo

calculations. Pike and Hill [10, 11] suggested a

multiplicative congruential method for pseudo-random

generation. Brent [12] presented a Gaussian PRNG for the

FORTRAN language. The presented algorithm generates

numbers which are independent and normally distributed

on [0, 1).

Impagliazzo and Levin [13] and Hastad [14] suggested

using one-way functions for pseudo-random number

generation. Deng et al. [15] suggested a number of

methods for enhancing the yield of pseudo-random

number generators, thus producing sequences which are

asymptotically independent and uniformly distributed.

Bellare et al. [16] presented the concept of distributed

pseudo-random number generators. Matsumoto and

Nishimura [17] presented an algorithm which they named

the Mersenne Twister (MT). The proposed algorithm had a

longer period and larger k-distributions when compared to

existing pseudo-random number generators at the time.

Ren [18] presented a PRNG that is capable of generating

sequences of long period, large complexity, balanced

statistics, and low cross-correlation from the addition of

m-sequences with pairwise-prime linear spans (AMPLS).

Xuelong et al. [19] proposed the use of one-dimensional

extended non-uniform cellular automata to generate

pseudo-random bit sequences. The cellular automata rules

were generated using a genetic algorithm.

Petit et al. [20] proposed a design for pseudo-random

number generation based on the block cipher design. The

proposed design showed very good resistance against side-

channel attack strategies.

Using of graphics hardware for generating PRNs was

proposed by Langdon [21]. He presented a high speed

pseudo-random number generator for the NVidia Cuda

parallel architecture using C++ as the implementation

language.

PRNGs based on chaotic iterations were also suggested

by Bahi et al. [22-24], for watermarking applications.

They proposed chaotic dynamical systems which appear to

be good candidates to achieving a mix of secure and fast

PRNGs in order to benefit from their respective qualities.

Mitra and Kundu [25] proposed a cost effective design

methodology for pseudo-random generation using cellular

automata and they presented an Equal Length Cellular

Automata based PRNG.

Heike et al. [26] suggested the generation of PRNs by

applying iteration to a one-way function, based on an

initial value and a random key to generate part of the PRN

that is used as a key in the next iteration step of the one-

way function.

Elsherbeny et al. [27] proposed a new Deterministic

Chaotic System that implements an Iteration Function

System (IFS) for generating a PRN. In this system and at a

certain initial value, the iterated function generates chaotic

random numbers.

Splittable pseudo-random number generators (PRNGs)

were very useful for structuring purely functional

programs that deal with randomness, because they allow

different parts of the program to independently generate

random values, thus avoiding random seed threading

through the whole program. Claessen and Palka [28]

proposed a Splittable PRNG using a cryptographic hash

function. In this scheme, the authors showed that the

currently known and used splittable PRNGs are either not

efficient enough, have inherent flaws, or lack formal

arguments about their randomness. They provided proofs

of randomness guarantee under some cryptographic

assumptions.

This paper suggests a PRNG which encompasses a

multi-stage algorithm that implements bitwise

manipulation. It is designed to achieve adequate bit string

confusion and diffusion by combining various processes

such as bit swapping, modular operations and secret

splitting techniques. Experimental results show that the

presented PRNG is cryptographically secure through the

application of the NIST randomness tests.

III. RANDOMNESS TESTS

PRNGs are either secure but slow, or fast but insecure

[29]. In addition, they are either not efficient enough, have

inherent flaws, or lack formal arguments for their

randomness. Claessen and Palka [28] provided proofs in

order to show strong guarantees of randomness under

assumptions commonly made in cryptography. Also, NIST

[6] published a set of statistical tests; six of them will be

used for validation purposes here. These tests are the

Frequency (Monobit) test, Frequency within a Block test,

the Runs test, the Longest-Run-of-Ones in a Block test, the

Binary Matrix Rank test, and the Discrete Fourier

Transform (or Spectral) test. The most important value to

calculate in these tests is the P-value, which is to be

compared with a significant probability level α. For

cryptographic applications, α is found to have a value of

about 0.01. α is defined as the probability that a

randomness test of the generated number indicates that it

is not random when it is really random. Moreover, the P-

value is the probability that a perfect random number

generator would have produced a bit sequence less random

than the sequence that was tested. The testing criteria

applied is if P-value >= α, then the sequence appears to be

random but if P-value < α, then the sequence appears to be

non-random. A short summary of the selected randomness

tests is given below.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4503 14

A. Frequency (Monobit) Test

It tests the proportion of 0’s and 1’s for the entire sequence

in order to determine whether they are approximately the

same as would be expected for a truly random sequence.

Given a number  = b1, b2…, bn, then the observed value

Sobs is calculated and used determine the P-value as

defined by eq 1.

n

S
S

n

obs  , then










n

S
erfcvalueP obs . . . (1)

Where Sn is the sum of all string bits after converting each

0 to -1, and erfc is the complementary error function.

B. Frequency Test within a Block

This test determines if the frequency of 1’s in an M-bit

blocks is approximately M/2, as expected under an

assumption of randomness. The P-value is calculated by

eq 2.

 2/)(,2/ 2 obsNigamcvalueP  . . . (2)

Where igamc is the incomplete gamma function, N is the

number of M-bit blocks to be tested, and χ
2
(obs) is the chi

function of the observed proportion of 1’s within a given

M-bit block.

C. The Runs Test

It tests the total number of uninterrupted sequence of

identical bits; i.e. it indicates the speed of 1’s and 0’s

whether it is too fast or too slow. The P-value is calculated

by eq 3.



















)1(21

)1(2)(





n

nobsV
erfcvalueP

n . . . (3)

Where Vn(obs) is the total number of run across n and π is

the pre-test proportion in the input sequence.

D. Longest-Run-of-Ones in a Block Test

It tests the longest run of 1’s within M-bit blocks, and its

consistency with that expected in a random sequence. The

P-value is calculated by eq 4.










2

)(
,

2

2 obsK
valueP

 . . . (4)

Where χ
2
(obs) is a matching measure between observed

longest run length within M-bit blocks with the expected

longest length within M-bit blocks, i.e. it gives how well

the observed number of ranks of various orders match the

expected number of ranks under an assumption of

randomness.

E. Matrix Rank

This test checks for linear dependence among fixed

length substrings of the original sequence. The P-value is

calculated by eq 5.

 . . . (5)

Where χ
2
(obs) is a measure of how well the observed

number of ranks of various orders match the expected

number of ranks under an assumption of randomness.

F. Discrete Fourier Transform (or Spectral) Test

It tests the peak heights in the Discrete Fourier

Transform of the sequence in order to detect periodic

features in the sequence that indicate a deviation from the

assumption of randomness. The intention is to detect

whether the number of peaks exceeding the 95 %

threshold is significantly different from 5 %. The P-value

is calculated by eq 6

.

 . . . (6)

Where d is the normalized difference between the

observed and the expected number of frequency

components that are beyond the 95 % threshold.

IV. THE PROPOSED PRNG METHODOLOGY

The PRNG algorithm proposed in this paper starts with

an agreed upon seed that could be s used as a key for a

cryptographic system. This seed is randomly selected and

may consist of any combination of letters (lower or upper

case) and numbers. The seed components are replaced by

their ASCII code binary representation as they enter to the

PRNG. This algorithm can generate PRN of any length;

however, for the purpose of assuring randomness by NIST

[6] standard tests, the selected seed shall be of length

n*128 bits where n is an integer value larger than 1.

Shannon’s principle of diffusion and confusion [30]

was achieved in the algorithm design through conducting

three successive stages covering bit manipulation such as

bit swapping and modular operations, logical operations,

and finally a secret splitting technique as detailed below.

A. Stage 1:

This stage achieves bits string confusion by initially

swapping the bits of the original seed and then applying

modular operations. It consists of the following 4 steps as

illustrated in fig 1.

Fig 1. Work flow for stage 1.

Step 1: On receiving the seed in binary form, bit string

confusion is achieved by interchanging or swapping

adjacent bits. Therefore if the seed bits string is

―b1b2b3b4…bn‖, then the resulting bit string by eq. 7.

"..." 4321 nbbbbbB 
 (7)

Step 2: The resulting number B, is split into blocks of

32 bits length each, eq. 8.

",...,," 3,21 kBBBBB 
, where k = n/32 . . . (8)

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4503 15

Step 3: The far most blocks (B1& Bk) are treated two

modular operations. This step performs modular

multiplication, resulting into blocks C1, and then the next

far most blocks (B2& Bk-1), are multiplied resulting into

blocks C2 and so on, giving the results by eq 9.

322mod)(jii BBC 

+1 (9)

Where i = 1, 2, 3, …, k/2 and j = k, k-1, k-2, …, (k/2) +1

Step 4: Similarly as in step 3, the same blocks are

treated by performing modular addition instead of modular

multiplication and the results are given by eq. 10.

322mod)(jij BBC 

 (10)

The resulting bit string of this stage will be as in eq 11.

",...,," 3,21 kCCCCC 
 (11)

B. Stage 2:

The obtained bit string C of the previous stage is used

as input to the next stage. Bitwise XOR operations are

performed on its components successively as illustrated in

fig 2. Each bit is XORed with that next to it from left to

right, while the least significant bit is finally XORed with

the most significant bit. The resulting bit string is given by

eq. 12.

",...,," 3,21 nDDDDD 
 (12)

Where, 1 iii CCD
, for i = 1 to n-1 and

1CCD nn 
 .

Fig 2. Work flow for stage 2.

C. Stage 3:

In order to introduce more control on the generated

PRN, some information must be agreed upon by the users

in advance. This would enable the users to generate their

own random numbers to be used for cryptographic

systems. The adopted structure of this agreed upon

information in the proposed algorithm consists of a

predefined procedure to group the obtained bit string D of

stage 2 into blocks of specific length (8 bits here), regroup

theses blocks according to a specified different secret

splitting weight for each segment, manipulate with these

segments as shown in the following steps.

Step1: split D into k segments of certain length, and

each segment is considered to be one cell. Therefore, the

number of cells k = n / segment bits (k = n / 8 here).

Step 2: Convert each segment into bytes and place that

segment in the cell.

Step 3: Use the agreed upon splitting weights or

percentages, such as r1 = 25%, r2 = 35%, and r3 = 45%. It

must be noted that any number of weights can be used.

Step 4: These cells are decomposed through a

successive segmentation process based on the given

splitting weights multiplied by the remaining number of

cells in each run, which is achieved by taking the integer

part only of the result and then use it as the number of

cells in each new segment. This step is demonstrated as

follows:

 R1 = └ k * r1% ┘,

 R2 = └ (k – R1) * r2 % ┘,

 R3 = └ (k – (R1+R2)) * r3 % ┘,

 R4 = └ (k – (R1+R2+R3)) * r1 % ┘ ,

And so on until all k cells are considered.

Step 5: Each new segment is then XORed with its

corresponding weight.

Step 6: Convert the output of step 5 back to binary

number.

At the end of this step, the system generates the first set

of pseudo-random numbers.

Step 7: In order to generate the next set of random

numbers, the obtained PRN of step 6 is fed as input to

stage 1, then all the steps of stages 1, 2, and 3 are repeated.

V. EXPERIMENTATION AND RESULTS

A software was written in C# language, implementing

the NIST tests utilised for the experiments conducted on

the proposed PRNG algorithm. The software is designed

to accept a seed of any number of characters and generate

as many random numbers as practically required. The used

seeds in these experiments are varying length binary

sequences obtained from the binary expansion of e

(exponent). This choice of seed was made in order to make

the experiments easily repeatable. Experiments were

carried out for the generation and testing of random keys

of 128, 512, 1024, and 2048 bit lengths. However, these

tests can be carried out practically for any key length. All

the generated numbers were tested for randomness through

the six elaborate tests outlined in section 3, namely

frequency test, frequency block test, runs test, longest run

test, binary matrix test and discrete Fourier transform

(spectral) test.

The potential problems with PRNGs are their failure in

statistical pattern-detection tests. The causes of failures

are usually attributed to many reasons such as lack of

distribution uniformity; correlation of successive values,

and the output sequence has poor dimensional distribution

and a shorter seed state.

In order to see the progress of randomness generation

throughout the three stages of the algorithm, the PRNG

algorithm is run using the secret splitting weights r1=20%,

r2=30%, and r3=50%. The obtained success rates for

random sequence generation for key lengths 128, 256,

512, 1024, and 2048 bits is listed in tables I - III.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4503 16

 TABLE I. FREQUENCY TEST AND FREQUENCY BLOCK TEST

RESULTS FOR THE THREE STAGES.

TABLE II. RUNS TEST AND LONGEST RUN TEST RESULTS FOR

THE THREE STAGES

 Key

length

Runs test Longest Run test

Stage1 Stage2 Stage3 Stage1 Stage2 Stage3

128

bit 98.5% 99.2% 99.7% 99.0% 98.2% 99.1%

256
bit 98.4% 99.3% 99.2% 99.0% 99.0% 99.1%

512

bit 98.9% 99.1% 98.9% 98.9% 98.3% 99.1%

1024
bit 99.1% 98.9% 98.9% 98.8% 99.4% 99.3%

2048

bit 98.4% 98.9% 99.1% 98.5% 98.8% 98.5%

TABLE III. BINARY MATRIX TEST AND DISCRETE SPECTRAL

TEST RESULTS FOR THE THREE STAGES.

Key

length

Binary Matrix Discrete Spectral test

Stage1 Stage2 Stage3 Stage1 Stage2 Stage3

128

bit 99.0% 99.0% 98.9% 98.1% 98.2% 98.4%

256
bit 98.5% 98.6% 99.1% 98.8% 98.5% 98.7%

512

bit 99.1% 99.2% 98.8% 98.8% 98.9% 98.9%

1024
bit 99.0% 98.6% 99.1% 98.7% 98.3% 99.1%

2048

bit 98.4% 98.1% 98.7% 98.4% 98.8% 99.0%

The results of the six tests for the three stages show the

improvement in randomness along the stages which

justifies the use of more than one stage in the proposed

algorithm.

The tests for the generated pseudo-random sequences by

the algorithm using all the six tests are listed in table IV.

This table lists the rate of success for key lengths of 128,

256, 512, 1024, and 2048 bits. The calculated rates of

success of the generated PRNs varies between 98.4% and

99.1% for the tests used, therefore, the proposed algorithm

is producing satisfactory randomness. This randomness is

confirmed by fig 3, which shows the algorithm rate of

failure as a function of the number of iterations. All the six

tests involved manifested convergence in the rate of

failure to a very small value around 1% as the number of

iterations increase beyond 2000 epoch.

TABLE IV. PERCENTAGES OF BIT SEQUENCES PASSING

THE NIST TESTS FOR THE PROPOSED PRNG ALGORITHM

 (FOR SECRET SPLITTING PERCENTAGES; R1=20%,

R2=30%, AND R3=50%)

Fig 3. The rate of failure for different tests along the

number of iterations.

An investigation is also conducted seeking the best

combination of secret splitting percentages that produce

better pseudo-random number generation. However, no

significant differences were noticed in the calculated

success rates for various secret splitting percentages in the

case of all the key sequence lengths involved, i.e. 128,

256, 512, 1024, and 2048 bits.

However, it was noticed that the 1024 bits key sequence

length has given slightly better randomness success rate

than others considered. The results of running the PRNG

algorithm for this case are listed in table V, and illustrated

in fig 4.

 Key

lengt

h

Frequency Frequency Block

Stage

1

Stage

2

Stage

3

Stage

1

Stage

2

Stage

3

128

bit 99.1% 98.9% 98.3% 99.4% 99.4% 99.2%

256

bit 98.8% 98.5% 99.3% 99.1% 98.8% 98.7%

512

bit 99.2% 98.9% 99.3% 98.9% 98.5% 98.6%

1024

bit 99.2% 98.8% 99.1% 99.4% 99.2% 99.8%

2048

bit 98.3% 98.5% 99.1% 99.3% 98.7% 99.3%

Key

Lengt

h

(bits)

Frequ

ency

Frequency
Block

Runs Longes

t Run

Binary

Matrix

DST

128 98.3% 99.2% 99.7% 99.1% 98.9% 98.4%

256 99.3% 98.7% 99.2% 99.1% 99.1% 98.7%

512 99.3% 98.6% 98.9% 99.1% 98.8% 98.9%

1024 99.1% 99.8% 98.9% 99.3% 99.1% 99.1%

2048 99.1% 99.3% 99.1% 98.5% 98.7% 99.0%

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4503 17

TABLE V: THE AVERAGE RATE OF SUCCESS FOR DIFFERENT TESTS ON SEQUENCES USING DIFFERENT PERCENTAGE VALUES

OVER 10000 ITERATIONS

Fig 4. The average rate of success for different tests on

sequences using different percentage values over 10000

iterations.

VI. SECURITY ISSUES

Mixing of bitwise manipulation or swapping,

performing modular operations (multiplication and

addition), implementing Boolean operations (XOR), and

secret splitting processes according to predefined weights

serves to avoid purely algebraic attacks and the purely bit

oriented attacks. They also prevent the mathematical

behaviour of the scheme from being shaped easily. They

both contribute to a great increase in mathematical

complexity together with high computational efficiency.

Moreover, all the adopted operations can be easily and

efficiently implemented whether by hardware or by

software.

VII. CONCLUSION

An algorithm for computationally fast, cryptographically

secure pseudo-random key generation has been proposed

and described in this paper. It is a multi-stage algorithm

based on mixing bitwise Boolean operations, integer

modular operations, along with bit manipulations and

displacements for secret splitting. The experimental part of

the paper demonstrated that an average of 98.9% the

generated sequences were unpredictable and passed

successfully six tests proposed by the NIST.

REFERENCES

[1] Schneier, B., Applied Cryptography: Protocols, Algorithms, and
Source Code in C, ed. S. Phil. 1995: John Wiley \\& Sons, Inc.

758.

[2] Krombholz, K., et al., Social engineering attacks on the knowledge
worker, in Proceedings of the 6th International Conference on

Security of Information and Networks. 2013, ACM: Aksaray,

Turkey. p. 28-35.

[3] L. Larger, a.J.M.D., Nonlinear dynamics Optoelectronic chaos.

Nature, 2010. 465(7294): p. 41-42.
[4] Q. Wang, J.B., C. Guyeux, and X. Fang, Randomness quality of CI

chaotic generators; application to internet security, in

INTERNET’2010. The 2nd International Conference on Evolving
Internet. 2010, IEEE Computer Society Press: Valencia, Spain. p.

125–130.

[5] Stockmal, F., Calculations with Pseudo-Random Numbers. J. ACM,
1964. 11(1): p. 41-52.

[6] Lawrence E. Bassham, I., et al., SP 800-22 Rev. 1a. A Statistical

Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications. 2010, National Institute of Standards

\& Technology.

[7] Barker, E.B. and J.M. Kelsey, SP 800-90A. Recommendation for
Random Number Generation Using Deterministic Random Bit

Generators. 2012, National Institute of Standards \& Technology.

[8] Moshman, J., The Generation of Pseudo-Random Numbers on a

Decimal Calculator. J. ACM, 1954. 1(2): p. 88-91.

[9] Kuehn, H.G., A 48-bit pseudo-random generator. Commun. ACM,

1961. 4(8): p. 350-352.
[10] Pike, M.C. and I.D. Hill, Algorithm 266: pseudo-random numbers

[G5]. Commun. ACM, 1965. 8(10): p. 605-606.

[11] Pike, M.C. and I.D. Hill, Remark on algorithm 266: pseudo-random
numbers. Commun. ACM, 1966. 9(9): p. 687.

[12] Brent, R.P., Algorithm 488: A Gaussian pseudo-random number

generator. Commun. ACM, 1974. 17(12): p. 704-706.
[13] Impagliazzo, R., L.A. Levin, and M. Luby, Pseudo-random

generation from one-way functions, in Proceedings of the twenty-
first annual ACM symposium on Theory of computing. 1989,

ACM: Seattle, Washington, USA. p. 12-24.

[14] Håstad, J., Pseudo-random generators under uniform assumptions,
in Proceedings of the twenty-second annual ACM symposium on

Theory of computing. 1990, ACM: Baltimore, Maryland, USA. p.

395-404.
[15] Deng, L.-Y., E.O. George, and Y.-C. Chu, On improving pseudo-

random number generators, in Proceedings of the 23rd conference

on Winter simulation. 1991, IEEE Computer Society: Phoenix,
Arizona, USA. p. 1035-1042.

[16] Bellare, M., J.A. Garay, and T. Rabin, Distributed pseudo-random

bit generators—a new way to speed-up shared coin tossing, in
Proceedings of the fifteenth annual ACM symposium on Principles

of distributed computing. 1996, ACM: Philadelphia, Pennsylvania,

USA. p. 191-200.
[17] Matsumoto, M. and T. Nishimura, Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number

generator. ACM Trans. Model. Comput. Simul. 1998. 8(1): p. 3-30.
[18] Ren, J., Design of long period pseudo-random sequences from the

addition of m-sequences over Fp. EURASIP J. Wirel. Commun.

Netw. 2004. 2004(1): p. 12-18.
[19] Xuelong, Z., et al., High-quality pseudo-random sequence generator

based on one-dimensional extended cellular automata, in

Proceedings of the 3rd international conference on Information
security. 2004, ACM: Shanghai, China. p. 222-223.

[20] Petit, C., et al., A block cipher based pseudo random number

generator secure against side-channel key recovery, in Proceedings
of the 2008 ACM symposium on Information, computer and

communications security. 2008, ACM: Tokyo, Japan. p. 56-65.

97.00%
98.00%
99.00%

100.00%

Frequency Frequency Block

Runs Longest Run

Binary Matrix DST

Key

Length

(bits)

Frequency Frequency

Block

Runs Longest

Run

Binary

Matrix

DST

128 98.3% 99.2% 99.7% 99.1% 98.9% 98.4%

256
99.3% 98.7% 99.2% 99.1% 99.1% 98.7%

512 99.3% 98.6% 98.9% 99.1% 98.8% 98.9%

1024 99.1% 99.8% 98.9% 99.3% 99.1% 99.1%

2048 99.1% 99.3% 99.1% 98.5% 98.7% 99.0%

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4503 18

[21] Langdon, W.B., A fast high quality pseudo random number

generator for nVidia CUDA, in Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation

Conference: Late Breaking Papers. 2009, ACM: Montreal, Québec,

Canada. p. 2511-2514.
[22] J. Bahi, C.G., and Q. Wang, A novel pseudo-random generator

based on discrete chaotic iterations, in INTERNET’09, 1-st

International conference on Evolving Internet. 2009: Cannes,
France. p. 71–76.

[23] J. Bahi, C.G., and Qianxue Wang, A pseudo random numbers

generator based on chaotic iterations; Application to watermarking,
in International conference on Web Information Systems and

Mining, WISM 2010. 2010: Sanya, China. p. 202–211.

[24] J. M. Bahi, a.C.G., Topological chaos and chaotic iterations,
application to hash functions, in IEEE World Congress on

Computational Intelligence WCCI. 2010: Barcelona, Spain. p. 1–7.

[25] Mitra, A. and A. Kundu, CA based cost optimized PRNG for

Monte-Carlo simulation of distributed computation, in Proceedings

of the CUBE International Information Technology Conference.

2012, ACM: Pune, India. p. 332-337.
[26] Heike B. Neumann, S.S., Matthias Voegeler, Method of generating

pseudo-random numbers. 2009.
[27] Mohamed Nageb Elsherbeny, M.R., Pseudo –Random Number

Generator Using Deterministic Chaotic System.

INTERNATIONAL JOURNAL OF SCIENTIFIC &
TECHNOLOGY RESEARCH, 2012. 1(9).

[28] Claessen, K.P., M, Splittable Pseudorandom Number Generators

using Cryptographic Hashing, in Proceedings of Haskell
Symposium. 2013. p. 47-58.

[29] H. B. Neumann, S.S., and M. Voegeler, Method of generating

pseudo-random numbers. 2009.
[30] Shannon, C.E., Communication Theory of Secrecy Systems. Bell

System Technical Journal, 1949. 28(4): p. 656-715.

BIOGRAPHIES

Adi A. Maaita is currently an assistant

professor at the Faculty of Information

Technology, Isra University. He

received his B.Sc. degree in 2002 from

the University of Jordan (Jordan), his

M.Sc.in 2003 from the New York

Institute of Technology (Jordan).Then received his Ph.D.

from the University of Leicester (UK) in 2008. His

research interests include Cryptography, Steganography,

Information and Computer Network Security, Genetic

Algorithms, Neural Networks, and Software Modelling.

Hamza A. A. Al_Sewadi is currently a

professor at the Faculty of Information

Technology, Isra University (Jordan).

He got his B.Sc. degree in 1968 from

Basrah University, Iraq, then M.Sc. and

Ph.D. degrees in 1973 and 1977

respectively, from University of London

(UK). He worked as associate professor at various

universities such as Basrah University (Iraq), Zarqa

University and Isra University (Jordan), visiting professor

at University of Aizu (Japan). His research interests

include Cryptography, Steganography, Information and

Computer Network Security, Artificial Intelligence and

Neural Networks.

